
PINTS: Probabilistic Inference on Noisy Time-Serieshttps://github.com/pints-team/pints

Pints: A Python Package for
Picking Probable Parameters

Michael Clerx
David J. Gavaghan
Sanmitra Ghosh
Ben C. Lambert
Chon Lok Lei
Gary R. Mirams
Martin Robinson

PINTS: Probabilistic Inference on Noisy Time-Serieshttps://github.com/pints-team/pints

Background
● In many domains, we encounter the problem of

parametrising mechanistic models (e.g. of
biological systems) using noisy time-series data

PINTS: Probabilistic Inference on Noisy Time-Serieshttps://github.com/pints-team/pints

Background
● In many domains, we encounter the problem of

parametrising mechanistic models (e.g. of
biological systems) using noisy time-series data

● PINTS stands for Probabilistic Inference on Noisy
Time-Series

PINTS: Probabilistic Inference on Noisy Time-Serieshttps://github.com/pints-team/pints

Background
● In many domains, we encounter the problem of

parametrising mechanistic models (e.g. of
biological systems) using noisy time-series data

● PINTS stands for Probabilistic Inference on Noisy
Time-Series

● It is a Python-based tool to tackle this problem
within a probabilistic framework

PINTS: Probabilistic Inference on Noisy Time-Serieshttps://github.com/pints-team/pints

Background
● Free Pints!

https://github.com/pints-team/pints

● Pints will serve as the fitting back-end
for the Cardiac Electrophysiology Web Lab

PINTS: Probabilistic Inference on Noisy Time-Serieshttps://github.com/pints-team/pints

Problem statement

PINTS: Probabilistic Inference on Noisy Time-Serieshttps://github.com/pints-team/pints

Problem statement

PINTS: Probabilistic Inference on Noisy Time-Serieshttps://github.com/pints-team/pints

Problem statement

or:

PINTS: Probabilistic Inference on Noisy Time-Serieshttps://github.com/pints-team/pints

Problem statement
● Given noisy experimental time series
● And a forward model with d parameters that can

predict values for a given set of times, we want
to:
– Find the best set of parameters
– Check how good they are

PINTS: Probabilistic Inference on Noisy Time-Serieshttps://github.com/pints-team/pints

Methods
● Optimisation

– Find single best fit
– Non-linear & derivative-free

● Sampling
– Find a distribution of probable parameters

PINTS: Probabilistic Inference on Noisy Time-Serieshttps://github.com/pints-team/pints

Implementation in Python

(times, measured_values)

simulated_values = model.simulate(parameters, times)

 d = model.n_parameters()

PINTS: Probabilistic Inference on Noisy Time-Serieshttps://github.com/pints-team/pints

Implementation in Python
class MyModel(pints.Model):
 def n_parameters(self):
 ...
 def simulate(self, parameters, times):
 ...
 # This is where you:
 # - Write a simple method in Python
 # - Call your own super C/C++ code
 # - Call on Chaste, OpenCOR, Myokit, anything
 # - As long as you can
 return simulated_values

PINTS: Probabilistic Inference on Noisy Time-Serieshttps://github.com/pints-team/pints

Implementation in Python
class MyModel(pints.Model):
 def n_parameters(self):
 ...
 def simulate(self, parameters, times):
 ...
 # This is where you:
 # - Write a simple method in Python
 # - Call your own super C/C++ code
 # - Call on Chaste, OpenCOR, Myokit, anything
 # - As long as you can
 return simulated_values

problem = SingleSeriesProblem(model, times, measured_values)

PINTS: Probabilistic Inference on Noisy Time-Serieshttps://github.com/pints-team/pints

Implementation in Python
class MyModel(pints.Model):
 def n_parameters(self):
 ...
 def simulate(self, parameters, times):
 ...
 # This is where you:
 # - Write a simple method in Python
 # - Call your own super C/C++ code
 # - Call on Chaste, OpenCOR, Myokit, anything
 # - As long as you can
 return simulated_values

problem = SingleSeriesProblem(model, times, measured_values)

simulated_values = problem.evaluate(parameters)
measured_values = problem.measured_values()

PINTS: Probabilistic Inference on Noisy Time-Serieshttps://github.com/pints-team/pints

Implementation in Python
class MyModel(pints.Model):
 def n_parameters(self):
 ...
 def simulate(self, parameters, times):
 ...
 # This is where you:
 # - Write a simple method in Python
 # - Call your own super C/C++ code
 # - Call on Chaste, OpenCOR, Myokit, anything
 # - As long as you can
 return simulated_values

problem = SingleSeriesProblem(model, times, measured_values)

error_measure = SumOfSquares(problem)

PINTS: Probabilistic Inference on Noisy Time-Serieshttps://github.com/pints-team/pints

Implementation in Python
class MyModel(pints.Model):
 def n_parameters(self):
 ...
 def simulate(self, parameters, times):
 ...
 # This is where you:
 # - Write a simple method in Python
 # - Call your own super C/C++ code
 # - Call on Chaste, OpenCOR, Myokit, anything
 # - As long as you can
 return simulated_values

problem = SingleSeriesProblem(model, times, measured_values)
error_measure = SumOfSquares(problem)

guessed_parameters = [1, 2, 3]
f = error_measure(guessed_parameters)

PINTS: Probabilistic Inference on Noisy Time-Serieshttps://github.com/pints-team/pints

Implementation in Python
class MyModel(pints.Model):
 def n_parameters(self):
 ...
 def simulate(self, parameters, times):
 ...
 # This is where you:
 # - Write a simple method in Python
 # - Call your own super C/C++ code
 # - Call on Chaste, OpenCOR, Myokit, anything
 # - As long as you can
 return simulated_values

problem = SingleSeriesProblem(model, times, measured_values)
error_measure = SumOfSquares(problem)

initial_point = [1, 2, 3]
optimisation = Optimisation(

error_measure, initial_point, method=pints.XNES)

PINTS: Probabilistic Inference on Noisy Time-Serieshttps://github.com/pints-team/pints

Implementation in Python
class MyModel(pints.Model):
 def n_parameters(self):
 ...
 def simulate(self, parameters, times):
 ...
 # This is where you:
 # - Write a simple method in Python
 # - Call your own super C/C++ code
 # - Call on Chaste, OpenCOR, Myokit, anything
 # - As long as you can
 return simulated_values

problem = SingleSeriesProblem(model, times, measured_values)
error_measure = SumOfSquares(problem)

initial_point = [1, 2, 3]
optimisation = Optimisation(

error_measure, initial_point, method=pints.XNES)

best_parameters = optimisation.run()

PINTS: Probabilistic Inference on Noisy Time-Serieshttps://github.com/pints-team/pints

Currently available optimisers
● Natural evolution strategies:

– CMAES (Hansen et al., 2006)
– XNES (Glasmachers et al., 2010)
– SNES (Schaul et al., 2011)

● Particle-based methods
– PSO (Kennedy & Eberhart, 1995)

PINTS: Probabilistic Inference on Noisy Time-Serieshttps://github.com/pints-team/pints

MCMC Sampling in Pints
class MyModel(pints.Model):
 def n_parameters(self):
 ...
 def simulate(self, parameters, times):
 ...
 # This is where you:
 # - Write a simple method in Python
 # - Call your own super C/C++ code
 # - Call on Chaste
 # - As long as you can
 return simulated_values

problem = SingleSeriesProblem(model, times, measured_values)

error_measure = SumOfSquares(problem)
log_likelihood = UnknownNoiseLogLikelihood(problem)

optimisation = Optimisation(error_measure, initial_point)
mcmc = MCMCSampling(log_likelihood, n_chains, initial_points)

best_parameters = optimisation.run()
chains = mcmc.run()

PINTS: Probabilistic Inference on Noisy Time-Serieshttps://github.com/pints-team/pints

Currently available inference methods:
● Monte Carlo Markov Chain (MCMC):

– AdaptiveCovarianceMCMC (Haario et al. 2001)
– DifferentialEvolutionMCMC (Ter Braak et al. 2006)
– MetropolisRandomWalkMCMC (Metropolis et al. 1953)
– PopulationMCMC (Jasra et al. 2007)

● Nested sampling
– NestedEllipsoidSampler (Mukherjee et al. 2008)
– NestedRejectionSampler (Skilling et al. 2006)

And we're still adding more!

PINTS: Probabilistic Inference on Noisy Time-Serieshttps://github.com/pints-team/pints

Boundaries & priors
● All optimisers accept boundaries:

problem = SingleSeriesProblem(model, times, measured_values)

error_measure = SumOfSquares(problem)

initial = [1, 2, 3]

boundaries = ([0, 0, 0], [5, 5, 5])

optimisation = Optimisation(
error_measure, initial, boundaries=boundaries, method=CMAES)

best_parameters = optimisation.run()

PINTS: Probabilistic Inference on Noisy Time-Serieshttps://github.com/pints-team/pints

Boundaries & priors
● Priors can be used in sampling:

problem = SingleSeriesProblem(model, times, measured_values)

log_likelihood = UnknownNoiseLogLikelihood(problem)

log_prior = UniformLogPrior([0, 0, 0, 1e-5], [5, 5, 5, 1e-3])
log_posterior = LogPosterior(log_likelihood, log_prior)

initial_points = [
[1, 2, 3, 1e-4], [2, 3, 4, 1e-4], [3, 1, 3, 1e-4]]

mcmc = MCMCSampling(log_posterior, 3, initial_points)

chains = mcmc.run()

PINTS: Probabilistic Inference on Noisy Time-Serieshttps://github.com/pints-team/pints

Ask-and-tell interface
● Most samplers and optimisers use an

ask-and-tell interface:

● This allows fine-grained control, lets users
parallelise their simulations, and removes the
monolithic “start-and-wait” paradigm

next_points = optimiser.ask()

scores = MASSIVE_CLUSTER_ON_THE_SOUTH_POLE.calculate()

optimiser.tell(scores)

PINTS: Probabilistic Inference on Noisy Time-Serieshttps://github.com/pints-team/pints

Diagnostic plots: trace and histogram

PINTS: Probabilistic Inference on Noisy Time-Serieshttps://github.com/pints-team/pints

Diagnostic plots: pairwise scatterplots

PINTS: Probabilistic Inference on Noisy Time-Serieshttps://github.com/pints-team/pints

Diagnostic plots: predicted time series

PINTS: Probabilistic Inference on Noisy Time-Serieshttps://github.com/pints-team/pints

Lots of Jupyter Notebooks on Github!

PINTS: Probabilistic Inference on Noisy Time-Serieshttps://github.com/pints-team/pints

Featuring many real-life examples!

PINTS: Probabilistic Inference on Noisy Time-Serieshttps://github.com/pints-team/pints

Infrastructure, docs & testing
● Pints is fully open source (BSD 3-clause license)
● 100% Python (2 and 3 compatible)

– PIP Installable

● Full API docs on http://pints.readthedocs.io
● Continuous integration using TRAVIS

– Coverage testing using Codecov.io

● Static Jupyter examples on Github
– Live Jupyter examples using Binder

PINTS: Probabilistic Inference on Noisy Time-Serieshttps://github.com/pints-team/pints

Future work
● Add local optimisation methods

– Via wrappers around e.g. scipy

● Add more sampling methods
– Including ones using first-order sensitivities

● Add functional/statistical testing
– In addition to current unit tests
– Based on famous (hard) “toy” problems

PINTS: Probabilistic Inference on Noisy Time-Serieshttps://github.com/pints-team/pints

Thank you!

We invite you all to use Pints!
and contribute methods & problems!

https://github.com/pints-team/pints

